Analisis Perbandingan Model Algoritma Data Mining dalam Memprediksi Harga Emas terhadap Mata Uang US Dollar (XAU/USD) di Pasar Forex

  • Patah Herwanto STMIK IM
  • Fanji Arief Suwandy
  • Yudhi Widya Arthana Rustam STMIK IM
  • Rosida STMIK IM
Keywords: Jaringan Saraf Tiruan, Support Vector Machine, Regresi Linier, Gaussian Process, Regresi Polinomial, Validasi Silang K-Fold, Akar Mean Square Error

Abstract

Studi ini menganalisis pergerakan harga XAU/USD di pasar forex untuk memfasilitasi prediksi tren yang akurat bagi para trader. Berbagai model algoritma data mining, termasuk Jaringan Saraf Tiruan (Neural Network), Mesin Vector Pendukung (Support Vector Machine), Gaussian Process, Regresi Linier, dan Regresi Polinomial, dibandingkan untuk akurasi. RapidMiner memproses data, dan Validasi Silang K-Fold digunakan untuk menentukan akurasi model. Akar Mean Square Error (RMSE) digunakan untuk evaluasi, dengan Jaringan Saraf Tiruan menunjukkan kesalahan terendah (7,059). Pengujian mengkonfirmasi identifikasi tren yang akurat dan prediksi harga penutupan oleh Jaringan Saraf Tiruan, membantu para trader dalam transaksi yang terinformasi.

References

Ayitey Junior, M., Appiahene, P., Appiah, O., & Bombie, C. N. (2023). Forex market forecasting using machine learning: Systematic Literature Review and meta-analysis. Journal of Big Data, 10(1), 9. https://doi.org/10.1186/s40537-022-00676-2

Blanco, V. (n.d.). On p-Support Vector Machines and Multidimensional Kernels.

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623

Cordero, C. A., Danao, B. M., & Sy, L. A. (n.d.). Predicting the XAU-USD Foreign Exchange Prices using Machine Learning.

Das, S., Nayak, J., Kamesh Rao, B., Vakula, K., & Ranjan Routray, A. (2022). Gold Price Forecasting Using Machine Learning Techniques: Review of a Decade. In A. K. Das, J. Nayak, B. Naik, S. Dutta, & D. Pelusi (Eds.), Computational Intelligence in Pattern Recognition (pp. 679–695). Springer. https://doi.org/10.1007/978-981-16-2543-5_58

Emilda, E. (2020). Adakah Pengaruh Event dalam Economic Calendar terhadap Gold Price (XAU/USD)? Jurnal Ilmiah Ekonomi Global Masa Kini, 11(1), Article 1. https://doi.org/10.36982/jiegmk.v11i1.1058

Gajewicz-Skretna, A., Kar, S., Piotrowska, M., & Leszczynski, J. (2021). The kernel-weighted local polynomial regression (KwLPR) approach: An efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models. Journal of Cheminformatics, 13(1), 9. https://doi.org/10.1186/s13321-021-00484-5

Gaussian Processes for Machine Learning | MIT Press eBooks | IEEE Xplore. (n.d.). Retrieved August 6, 2023, from https://ieeexplore.ieee.org/book/6267323

Herwanto, P., Marliani, N., & Rosida, R. (2023). PREDIKSI KINERJA KEUANGAN PT ASTRA INTERNATIONAL TBK DENGAN REGRESI LINIER DAN EXPONENTIAL SMOOTHING. Infotronik : Jurnal Teknologi Informasi Dan Elektronika, 8(1), 12. https://doi.org/10.32897/infotronik.2023.8.1.2734

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Lederer, J. (2022). Linear Regression. In J. Lederer (Ed.), Fundamentals of High-Dimensional Statistics: With Exercises and R Labs (pp. 37–79). Springer International Publishing. https://doi.org/10.1007/978-3-030-73792-4_2

Lunt, M. (2015). Introduction to statistical modelling: Linear regression. Rheumatology, 54(7), 1137–1140. https://doi.org/10.1093/rheumatology/ket146

Ningsih, I. V. W., Sugiharto, S., & Utomo, S. (2022). Perbandingan Return Investasi Emas Dan Investasi Saham (Capital Gain) PT. Aneka Tambang Tbk Pada Periode Januari 2019 – April 2020. Smart Business Journal, 1(1), Article 1. https://doi.org/10.20527/sbj.v1i1.12786

Pratikto, F. R. (2023). Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang. Jurnal Rekayasa Sistem Industri, 12(1), 1–10. https://doi.org/10.26593/jrsi.v12i1.6380.1-10

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The MIT Press. https://doi.org/10.7551/mitpress/3206.001.0001

Rotep, R., Arfiana, S., & Kusuma, W. (2021). Trading Forex Platform Meta Trader 4: Perspektif Fatwa DSN MUI No. 28/DSN-MUI/III/2002 tentang Jual Beli Mata Uang Al-Sharf. El Hisbah: Journal of Islamic Economic Law, 1, 299–312. https://doi.org/10.28918/el_hisbah.v1i2.4961

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2019). Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005-2019 (arXiv:1911.13288). arXiv. http://arxiv.org/abs/1911.13288

Sofi, K., Sunge, A. S., Riady, S. R., & Kamalia, A. Z. (2021). PERBANDINGAN ALGORITMA LINEAR REGRESSION, LSTM, DAN GRU DALAM MEMPREDIKSI HARGA SAHAM DENGAN MODEL TIME SERIES. PROSIDING SEMINASTIKA, 3(1), Article 1. https://doi.org/10.47002/seminastika.v3i1.275

Wong, T.-T., & Yeh, P.-Y. (2020). Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1586–1594. https://doi.org/10.1109/TKDE.2019.2912815

XAU USD Historical Data—Investing.com. (n.d.). Retrieved August 6, 2023, from https://www.investing.com/currencies/xau-usd-historical-data

Published
2024-05-01